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Extending Irreproducible Discovery Rate (IDR) Model
Inference to m Sample Replicates

1 Covariance Matrix, Determinant, and Inverse

In section 4 of the Supplementary Materials for Li et el. 201124, “Extension of our model
to the case of m > 2.” the authors present their model extended to m-replicates. For each
component, k = 0, 1, the m-dimensional covariance matrix can be written:

⌃k = �2
k [(1� ⇢k) I + ⇢k ] (1)

Below we will briefly consider properties of this matrix.

1.1 Covariance Matrix Determinant

The matrix determinant can be computed via Sylvester’s determinant theorem:
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1.2 Covariance Matrix Inverse

The matrix inverse can be computed via the Sherman-Morrison formula:
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2 Maximum Log-Likelihood of Pseudo-Data

Considering the general model above, we can extend Equation (1.5) from section 1 of the
Supplementary Materials for Li et el. 201124, ”Estimation algorithm for the copula mixture
model.” This equation represents the second term of Q(✓, ✓t):
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As outlined in that section, we can obtain estimates for model parameters (µ1, �1, and ⇢1)
by maximizing the expected likelihood.

2.1 µ1 Derivative and MLE

Taking derivatives w.r.t. the mean paramater, µ1, we have the following:
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Setting the right-hand to zero (assuming �1 > 0, ⇢1 < 1, and m > 0):

0 =
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Ki (zi � µ1) (6)
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Solving for Ki, we see that the MLE estimate of the mean is a weighted mean of replicate
means:

µ(t+1)
1 =

Pn
i=1K

(t+1)
i zi

Pn
i=1K

(t+1)
i

(7)

2.2 �1 Derivative

Taking derivatives w.r.t. the standard deviation, �1, we have the following:

@lz
@�1

=
nX

i=1

Ki

(
� m

�1
+

1

�3
1 (1� ⇢1)

mX

p,q

⇢
(zi,p � µ1) (zi,q � µ1)

✓
Ipq �

⇢1
1 + (m� 1) ⇢1

pq

◆�)

(8)

Setting the right-hand to zero (assuming �1 > 0, and m > 0):
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2.3 ⇢1 Derivative

Taking derivatives w.r.t. the correlation coe�cient, ⇢1, we have the following:
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Setting the right-hand to zero (assuming �1 > 0, and ⇢1 < 1):
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2.4 MLEs for �1 and ⇢1

In order to solve the system of equations (9) and (11) above we define a weighted covariance,
C, and a total weight, W :
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The trace and sum of C are important data summaries:
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These definitions allow us to separate variance and correlation terms in equations (9) and
(11):
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By equating the right-sides of equations (14) and (1) we obtain a simple expression for the
MLE correlation coe�cient:
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Plugging this expression into the variance equation (14) we obtain a simple expression for
MLE variance as well:
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